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Abstract. An effective theory of large-NC QCD of pseudoscalar, vector, and axial-vector mesons has been
used to study six Kl4 decay modes. It has been found that the matrix elements of the axial-vector current
dominate the Kl4 decays. PCAC is satisfied. A relationship between three form factors of the axial-vector
current has been predicted. Partial-wave analysis has been done. Non-zero phase shifts are originated in
ρ → ππ. The decay rates are calculated in the chiral limit. In this study there is no adjustable parameter.

PACS. 13.25.-R Hadronic decays of mesons

1 Introduction

There is rich physics in kaon decays. Study on rare kaon
decays is still active. The theoretical study of Kl4 decays
has a long history [1–5]. In the sixties the current alge-
bra [2] has been applied to evaluate the form factors of
Kl4. In the nineties the form factors have been calculated
to next-to-leading order in the Chiral Perturbation The-
ory(ChPT) [3]. By combining the phenomenologies of Kl4

and ππ scattering the three parameters L1,2,3 of ChPT
have been determined. In ref. [4] the theoretical uncertain-
ties affecting the Pais-Treiman method have been investi-
gated and it was found that the corrections to the Pais-
Treiman formula from neglecting higher partial waves are
less than 1%. In order to obtain these results in the ChPT
the form factors at the one-loop level have been used. A
study of measuring the ππ phase shifts in Ke4 decay has
been presented in ref. [5].

As pointed in ref. [3] there is a puzzle in the studies of
Kl4. Using as input the experimental central values of the
form factors [6], the total decay rate of K+ → π+π−e+νe
is determined to be [3]

ΓKe4 = 2.94× 103 s−1

and the experimental value [6] is

ΓKe4 = (3.16± 0.14)× 103 s−1.

In this paper we use a different approach to study Kl4

decays. In ref. [7] we have proposed an effective theory
of large-NC QCD [8] of pseudoscalar, vector, and axial-
vector mesons. In this theory the diagrams at the tree level
are at the leading order in the large-NC expansion and the
loop diagrams of mesons are at higher orders. So far, all
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calculations are done at the tree level and the results show
that this theory is phenomenologically successful [9–11].

We have used this theory to studyKl3 [7],K → eνγ [9,
12], kaon form factors [11], , πK scattering [10], and ππ
scattering [7]. Theoretical results agree well with the data.
This theory extends the study of meson physics to higher
energy. It takes the ChPT as the low-energy limit. All the
ten parameters of ChPT have been predicted [12]. Theo-
retical values of these parameters are compatible with the
ones determined by the input data in the ChPT [13]. In
this theory the Vector Meson Dominance(VMD) is a nat-
ural result and PCAC is satisfied. There are five param-
eters: three current quark masses, a parameter related to
the quark condensate, and a universal coupling constant
g which is determined to be 0.39 by fitting ρ → ee+. All
parameters have been fixed by previous studies.

In this paper we use this theory of pseudoscalar,
vector, and axial vector mesons [7] to study K− →
π+π−lν, π0π0lν, and KL → π±π0l∓ν. There is no ad-
justable parameter.

The Lagrangian of this theory [7] is

L = ψ̄(x)(iγ · ∂ + γ · v + γ · aγ5 −mu(x))ψ(x)

+
1
2
m2

1(ρ
µ
i ρµi + ωµωµ + aµi aµi + fµfµ)

+
1
2
m2

2(K
∗a
µ K̄∗aµ +Kµ

1 K1µ) +
1
2
m2

3(φµφ
µ + fµs fsµ)

+ψ̄(x)Lγ ·Wψ(x)L + LW + Llepton − ψ̄Mψ, (1)

where aµ = τia
i
µ + λaK

a
1µ + (2

3 + 1√
3
λ8)fµ + (1

3 −
1√
3
λ8)fsµ (i = 1, 2, 3 and a = 4, 5, 6, 7), vµ = τiρ

i
µ +

λaK
∗
µ+(2

3+
1√
3
λ8)ωµ+(1

3 − 1√
3
λ8)φµ, W i

µ is the W -boson,
and u = exp{γ5i(τiπi+λaK

a+η+η′)}, m is a parameter,
and M is the mass matrix of u, d, s quarks, the masses
m2

1, m
2
2, and m2

3 have been determined theoretically. The
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introduction of physical meson fields, of the universal cou-
pling constant g, and of other physical quantities can be
found in ref. [7]. We start from this Lagrangian to study
Kl4 decays.

The amplitudes of the vector and axial-vector currents
of Kl4 decays are expressed as

〈πiπj |Aµ|K〉 = 1
2
√
8mKω1ω2

i

mK

×{(p1 + p2)µF ij + (p1 − p2)µGij + qµR
ij},

〈πiπj |Vµ|K〉 = 1
2
√
8mKω1ω2

Hij

m3
K

× εµνλρpν(p1 + p2)λ(p1 − p2)ρ, (2)

where p1, p2, p are the momenta of two pions and of the
kaon, respectively, q = p− p1 − p2, and i, j = +,−, 0. We
define

q2
1 = (p− p1)2, q2

2 = (p− p2)2, q2
3 = (p1 + p2)2.

The form factors, F ij , Gij , Rij and Hij are functions of
q2, q2

1 , q
2
2 , and q2

3 . These four variables satisfy

q2
1 + q2

2 + q2
3 = m2

K + 2m2
π + q2.

The paper is organized as: 1) introduction; 2) isospin rela-
tion; 3) form factors of the vector current; 4) K∗ → Kππ
decay; 5) form factors of axial-vector current; 6) decay
rates; 7) conclusions.

2 Isospin relation

For the decay modes K− → π+π−lν, π0π0lν and K̄0 →
π+π0lν there are isospin relations between the form fac-
tors. We take −π+, π0, and π− as isospin triplet and −K̄0

and K− as isospin doublet. The isospin relation is ob-
tained as

A+− = A00 − 1√
2
A+0, (3)

where Aij = F ij , Gij , Rij ,Hij , respectively.

3 Form factors of the vector current

The VMD is revealed from this theory [7]. The cou-
pling between the W -bosons and the bosonized vector
current(∆s = 1) has been derived as [9]

LV =
gW
4

sin θCg{−1
2
(∂µW+

ν −∂νW
+
µ )(∂µK∗−

ν −∂νK
∗−
µ )

−1
2
(∂µW−

ν −∂νW
−
µ )(∂µK∗+

ν −∂νK
∗+
µ )

+W+
µ j−µ +W−

µ j+
µ }, (4)

where j±µ is obtained by substituting

K±
µ → gW

4
sin θCgW

±
µ

π

π

ρ K*

K

l

ν

K

π

K* K*

π

l

ν

(a)

(b)

Fig. 1. Feynman diagrams of the vector current.

into the vertex in which the field of the K∗-meson, Kµ, is
involved.

The matrix elements of the vector current of Kl4 can
be calculated by using eq. (4). There are two subprocesses
which are shown in fig. 1(a,b). Three kinds of vertices are
involved: the contact term LK∗Kππ, LK∗K∗π and LK∗Kπ,
and LK∗Kρ and Lρππ. In the chiral limit, mq → 0, all
these vertices have been derived from the Lagrangian (1)
[7] and are listed below:

LK∗K∗π = − NC

π2g2fπ
εµναβdaciK

a
µ∂νK

c
α∂βπ

i,

LK∗Kπ =
2
g
f(q2)fabiKa

µ(∂µπ
iKb − πi∂µK

b),

f(q2) = 1 +
q2

2π2f2
π

[(1− 2c
g
)2 − 4π2c2)],

c =
f2
π

2gm2
ρ

,

LK∗ρK = − NC

π2g2f2
π

εµναβdabiK
a
µ∂νρ

i
α∂βK

b,

Lρππ =
2
g
f(q2)εijkρiµπ

j∂µπ
k,

LK∗Kππ =
2

gπ2f3
π

(1− 6c
g

+
6c2

g2
)

× dabefcdeε
µναβKa

µ∂νP
b∂αP

c∂βP
d. (5)

The matrix element of the vector current of Kl4(2) are
calculated by using eqs. (4),(5). The form factors Hij are
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found:

H+−=
2m3

Km2
K∗

q2−m2
K∗

{ 1
π2f3

π

(1− 6c
g
+
6c2

g2
)− NC

g2π2fπ

f(q2
2)

q2
2−m2

K∗

− NC

2g2π2fπ

f(q2
3)

q2
3 −m2

ρ + i
√
q2
3Γ (q

2
3)

}
, (6)

H00 = −2m
3
Km2

K∗

q2−m2
K∗

Nc

2g2π2fπ

{ f(q2
2)

q2
2−m2

K∗
− f2(q2

1)
q2
1−m2

K∗

}
, (7)

H+0 =
√
2m3

Km2
K∗

q2 −m2
K∗

{
− 2

π2f3
π

(1− 6c
g

+
6c2

g2
)

+
NC

π2g2fπ
[

f(q1)
q2
1 −m2

K∗
+

f(q2)
q2
2 −m2

K∗

+
f(q3)

q2
3 −m2

ρ + i
√
q2
3Γρ(q

2
3)
]
}
, (8)

where Γρ is the decay width of the ρ-meson

Γρ(q2
3) =

√
q2
3f

2(q2
3)

12g2π
(1− 4m2

π

q2
3

)
3
2 . (9)

The decay width of the ρ-meson is determined to be 142
MeV which is in good agreement with the data. Equa-
tions (6)-(8) show that the isospin relation(3) is satisfied.

The form factors (6)-(8) originate in the Wess-Zumino-
Witten anomaly. They are different from the ones pre-
sented in ref. [3]. These form factors are responsible for
the decay K∗ → Kππ.

4 K∗ → Kππ decay

The form factors of the vector current are determined by
the vertices (5). On the other hand, these vertices are
responsible for the decay of K∗ → Kππ. As a test of these
vertices the decay widths of K∗ → Kππ are calculated:

Γ (K∗− → K−π+π−) =
1

96(2π)3mK∗

∫
dk2

1dk
2
2{p2

1p
2
2 − (p1 · p2)2}|A|2 =

0.29× 10−5 GeV , (10)

which is less than the experimental upper limit [14], where
A is the decay amplitude and is determined by eq. (5):

A =
4

gπ2f3
π

(1− 6c
g

+
6c2

g2
)

− 4Nc

g3π2fπ

f(k2
2)

k2
2 −m2

K∗ + i
√
k2
2ΓK∗(k2

2)

− 2Nc

g3π2fπ

f(k2
3)

k2
3 −m2

ρ + i
√
k2
3Γρ(k

2
3)

, (11)

where k2
1 = (p+ p1)2, k2

2 = (p+ p2)2, k2
3 = (p1 + p2)2, and

p1, p2, p are the momenta of π+, π− and K−, respectively,
ΓK∗ is the decay width of K∗:

ΓK∗(k2
2) =

f2(k2
2)

2πg2k2
2

{ 1
4k2

2

(k2
2 +m2

K −m2
π)

2 −m2
K} 3

2 .

(12)

Using eq. (5), we obtain

Γ (K∗− → K−π0π0) =
1

192(2π)3mK∗

∫
dk2

1dk
2
2

{
p2
1p

2
2 − (p1 · p2)2

}

× 36
π4g6f2

π

{ f(k1)
k2
1 −m2

K∗ + i
√
k2
1ΓK∗(k2

1)

− f(k2)
k2
2 −m2

K∗ + i
√
k2
2ΓK∗(k2

2)

}2

=

0.61× 10−6 GeV (13)

and

Γ (K∗− → K̄0π−π0) =
1

96(2π)3mK∗

∫
dk2

1dk
2
2

{
p2
1p

2
2 − (p1 · p2)2

}|B|2 =

0.38× 10−4 GeV, (14)

where

B = − 8√
2gf3

π

(1− 6c
g

+
6c2

g2
)

+
12√

2π2g3fπ

{ f(k1)
k2
1 −m2

K∗ + i
√
k2
1ΓK∗(k2

1)

+
f(k2)

k2
2 −m2

K∗ + i
√
k2
2ΓK∗(k2

2)

+
f(k3)

k2
3 −m2

ρ + i
√
k2
3Γρ(k

2
3)

}
. (15)

The theoretical results are compatible with the data [14].

5 Form factors of the axial-vector current

In the chiral limit, the axial-vector part of the interaction
between the W -boson and mesons is expressed as [9]

LAs = gW
4

1
fa

sin θC

×{ − 1
2
(∂µW±

ν − ∂νW
±
µ )(∂µK∓ν

1 − ∂νK∓µ
1 ) +W±µj∓µ

}

+
gW
4

sin θC∆m2faW
±
µ K∓µ

1 +
gw
4

sin θCfKW±
µ ∂µK∓,(16)

whereK1 is the axial-vector kaon field and j±µ are obtained
by substituting K±

1µ → gW

4fa
sin θCW

±
µ into the vertex in

which K1 fields are involved. From ref. [9] we have

fa = g−1(1− 1
2π2g2

)−
1
2 , (17)

∆m2 = 6m2g2 = f2
π(1−

f2
π

g2m2
ρ

)−1. (18)

The mass of the K1-meson is determined [7]:

(1− 1
2π2g2

)m2
K1

= 6m2 +m2
K∗ . (19)
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Fig. 2. Feynman diagrams of the axial-vector current.

The numerical value is mK1 = 1.322GeV which is com-
patible with the data [14].

Two subprocesses contribute to the matrix element of
the axial-vector current. They are shown in fig. 2(a,b). The
vertices of mesons involved in these processes are LK1K∗π,
LK∗Kπ and LK1ρK , Lρππ. There is a contact term LK1Kππ

too. However, the calculation shows that the contribution
of the contact term is very small and negligible. In the
chiral limit, these vertices have been derived from the La-
grangian (1) [7]

LK1K∗π = fabi
{
A(p2)Ka

1µK
∗b
µ πi

−BKa
1µK

∗b
ν ∂µνπ

i +DKa
1µ∂

µ(K∗b
ν ∂νπi)

}
,(20)

LK1ρK = −fabi
{
A(p2)Ka

1µρ
i
µK

b

−BKa
1µρ

i
ν∂µνK

b +DKa
1µ∂

µ(ρiν∂
νKb)

}
, (21)

where

A(p2) =
2
fπ

gfa
{F 2

g2
+ p2[

2c
g

+
3

4π2g2
(1− 2c

g
)]

+q2[
1

2π2g2
− 2c

g
− 3

4π2g2
(1− 2c

g
)]
}
, (22)

F 2 = f2
π(1−

2c
g
)−1, (23)

B = − 2
fπ

gfa
1

2π2g2
(1− 2c

g
), (24)

D = − 2
fπ

fa
{
2c+

3
2π2g

(1− 2c
g
)
}
, (25)

where q and p are the momenta of K1 and of the vector
meson, respectively.

By using eqs. (16,20,21), we obtain

〈π+π−|Aµ|K−〉 = 1√
2
(
qµqν
q2

− gµν)
g2fam

2
K∗

q2 −m2
K1

×〈π+π−|{A(pK∗)K̄0
νπ

− −BK̄0
λ∂λνπ

−}

− 1√
2

{
A(pρ)ρ0

νK
− −Bρ0

λ∂λνK
−}|K−〉. (26)

Equation (26) shows that PCAC is satisfied in the chi-
ral limit. The reason is that the Lagrangian (1) is chiral
symmetric in the limit mq → 0. On the other hand, the
PCAC results in the cancellations between the four terms
of eq. (26). Equation (16) shows that the axial-vector cur-
rent has a more complicated structure than the vector
current (4) does. In the chiral limit applying PCAC to
eq. (2), a relationship between the three form factors of
the axial-vector current is obtained:

R = − 1
q2

{
q · (p1 + p2)F + q · (p1 − p2)G

}
. (27)

Substituting the vertices (20,21) into eq. (26), the three
form factors are obtained:

F+− =
2gfam2

K∗mK

q2 −m2
K1

×{ f(q2
2)

q2
2 −m2

K∗
[
3
2
A(q2

2) +
1
2
Bp1 · (p+ p2)]

+
f(q2

3)
q2
3 −m2

ρ + i
√
q2
3Γρ(q

2
3)
Bp · (p2 − p1)

}
, (28)

G+− = −2gfam2
K∗mK

q2 −m2
K1

×{ f(q2
2)

q2
2 −m2

K∗
[−1

2
A(q2

2) +
1
2
Bp1 · (p+ p2)]

− f(q2
3)

q2
3 −m2

ρ + i
√
q2
3Γρ(q

2
3)
A(q2

3)
}
. (29)

In the same way the form factors of other two decay
modes are obtained

F 00 =
gfam

2
K∗mK

q2 −m2
K1

×{ f(q2
1)

q2
1 −m2

K∗
[
3
2
A(q2

1) +
1
2
B(p2 · p+ p2 · p1)]

+
f(q2

2)
q2
2 −m2

K∗
[
3
2
A(q2

2) +
1
2
B(p1 · p+ p1 · p2)]

}
, (30)

G00 = −gfam
2
K∗mK

q2 −m2
K1

×{ f(q2
1)

q2
1 −m2

K∗
[
1
2
A(q2

1)−
1
2
B(p2 · p+ p2 · p1)]

+
f(q2

2)
q2
2−m2

K∗
[−1

2
A(q2

2)+
1
2
B(p1 ·p+ p1 ·p2)]

}
, (31)
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F+0 =
√
2gfam2

K∗mK

q2 −m2
K1

×{ f(q2
1)

q2
1 −m2

K∗
[
3
2
A(q2

1) +
1
2
B(p2 · p+ p2 · p1)]

− f(q2
2)

q2
2 −m2

K∗
[
3
2
A(q2

2) +
1
2
B(p1 · p+ p1 · p2)]

+
2f(q2

3)
q2
3 −m2

ρ + i
√
q2
3Γρ(q

2
3)
Bp · (p1 − p2)

}
, (32)

G+0 = −
√
2gfaM2

K∗mK

q2 −m2
K1

×{ f(q2
1)

q2
1 −m2

K∗
[
1
2
A(q2

1)−
1
2
B(p2 · p+ p2 · p1)]

− f(q2
2)

q2
2 −m2

K∗
[−1

2
A(q2

2) +
1
2
B(p1 · p+ p1 · p2)]

+
2f(q2

3)
q2
3 −m2

ρ + i
√
q2
3Γρ(q

2
3)
A(q2

3)
}
. (33)

The isospin relations (3) among these form factors are
satisfied.

The partial-wave analysis of these form factors can be
done. The decay channel ρ → ππ contributes to the decay
modes of π+π− and π+π0. The range of the variable q2

3 is
4m2

π < q2
3 < (mK −ml)2 in which the decay width Γρ(q2

3)
is not zero. The form factors, A+− and A+0 are complex
functions of q2

3 . The ρ → ππ does not contribute to π0π0

mode. Therefore, F 00 and G00 are real. The q2
1 and q2

2

variables are expressed as

q2
1 =

1
2
(m2

K+2m2
π+q2−q2

3) + (1− 4m2
π

q2
3

)
1
2X cos θπ, (34)

q2
2 =

1
2
(m2

K+2m2
π+q2−q2

3)− (1− 4m2
π

q2
3

)
1
2X cos θπ, (35)

where X =
{

1
4 (m

2
K−q2−q2

3)
2−q2q2

3

} 1
2 and θπ is the angle

between p1 and p in the rest frame of the two pions.
In refs. [6,15] by assuming the s- and p-waves domi-

nance the partial-wave analysis has been done. As pointed
in ref. [3], there are partial waves of higher orders. This is
true in the form factors obtained in this paper. In order
to compare with data we expand the form factors (28-33)
up to s- and p-wave only. We obtain

F+− = F+−
s + F+−

p eiδ
+−
p cos θπ,

G+− = G+−
s eiδ

+−
s +G+−

p cos θπ, (36)

F+0 = F+0
p eiδ

+0
p cos θπ,

G+0 = G+0
s eδ

+0
s , (37)

F 00 = F 00
s ,

G00 = G00
p cos θπ. (38)

All the phase shifts are caused by the decay ρ → ππ and
they are functions of q2 and q2

3 .
In order to compare with the data sl = q2 and sπ = q2

3

are used in following equations. For the π+π− mode the

numerical results are

F+−
s = 4.36

{
1 + 0.12

sl
4m2

π

− 0.16(
sπ
4m2

π

− 1)
}
,

G+−
s = 5.06

{
1 + 0.002

sl
4m2

π

+ 0.23(
sπ
4m2

π

− 1)
}
,

H+−
s = −5.82{1 + 0.13

sl
4m2

π

+ 0.023(
sπ
4m2

π

− 1)
}
, (39)

For the π+π0 mode we obtain

F+0
s = 0,

F+0
p = 1.1,

G+0 = 9.04
{
1 + 0.052

sl
4m2

π

+ 0.028(
sπ
4m2

π

− 1)
}

H+0 = 5.78. (40)

The corresponding amplitudes for the π0π0 mode can be
obtained by the isospin relations (3).

In refs. [6,15] assumptions, like the absence of higher
waves, sl-independence of the form factors and equality
of the slopes, have been made. Under these assumptions
the following expressions for the π+π− mode have been
determined in ref. [6]:

F+−
s = (5.59± 0.14)

{
1 + λf (

sπ
4m2

π

− 1)
}
,

G+− = (4.77± 0.27)
{
1 + λg(

sπ
4m2

π

− 1)
}
,

H+− = −(2.68± 0.68)
{
1 + λh(

sπ
4m2

π

− 1)
}
,

λf = λg = λh = 0.08± 0.02. (41)

For the π+π0 mode the form factors determined in ref. [15]
are

F = fse
iδs + fp cos θπeiδp ,

G = geiδp ,

H = heiδp , (42)
g = (7.8± 0.7± 0.2)

×{
1 + (0.014± 0.087± 0.070)(

sπ
4m2

π

− 1)
}
,

fs
g

= −0.010± 0.016± 0.017,

fp
g

= −0.079± 0.049± 0.022,

h

g
= −0.017± 0.31± 0.31. (43)

A comparison between the theoretical results of the
form factors and the measurements shows that

1) for π+π− mode the central values of the theoretical
form factors (multiplied by 2), F and G, are compati-
ble with the data (41),

2) the dependencies of F+−
s (39) on sl and sπ are different

from the data (41),
3) the dependence of G+−(39) on sl and sπ is compatible

with the data (41),
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4) the central value of H+−(39) is greater than the data
(41) by a factor of two,

5) from eqs. (40) we obtain

g = 9.04,
fs
g

= 0,
fp
g

= 0.12,
h

g
= 0.64,

the central values of g, fs

g ,
fp

g are compatible with the
data (43),

6) the theoretical value of h
g is different from the data

(43),
7) the dependence of G+−

s on sl and sπ is different from
the data (43).

8) In ref. [6] F+−
p was found to be compatible with zero,

and hence we put it equal to zero when the final re-
sult of G+− was derived. In this paper the calculation
of the form factors shows that the values of G+− are
greater than F+− by more than a factor of two. The
calculation also shows that F+−

p is less than 10% of
F+−
s . These results are in agreement with the data [6].

9) In this theory the phase shift of the p-wave originates
in the decay ρ → ππ, which is a function of sl and sπ.
The value of this phase-shift is about few degrees. The
phase shift of the s-wave cannot be obtained in this
theory. As pointed out in ref. [7], in order to get the
s-wave phase-shift the ππ scattering the σ-meson has
to be introduced into this theory.

It is necessary to point out that because of kinematic rea-
sons, the contribution of the anomalous form factor H
is negligibly small and theoretical H fits the data of the
decay K∗ → Kππ well.

For reference the form factor obtained by Weinberg [2]
are listed below

F = G =
mK

√
2

fπ
= 7.48,

H = 0. (44)

6 Decay rates

The decay rates of the three modes ofKe4 andKµ4 are cal-
culated. As mentioned above, all the form factors are de-
rived in the chiral limit. Therefore, only the leading terms
of the masses of the kaon and pions are kept in the calcu-
lation of the decay rates.

Ignoring me, only the form factors F , G, and H con-
tribute to the decay rates of Ke4. By using the formula of
ref. [1], we obtain

Γ (K− → π+π−eν) = 3130 s−1,

Γ (K−→π0π0eν)=0.221×10−21 GeV, B=0.42×10−5.

Γ (KL → π+π0eν) = 4923 s−1, B = 2.55× 10−4.

The experimental data are

Γ (K− → π+π−eν) = (3160± 140) s−1 [6],

B(π0π0) = (2.54± 0.89)× 10−5(10 events) [16],

Γ (KL → π+π0eν) = (1700± 320) s−1 [15],

B(π−π0) = (6.2± 2.0)× 10−5 [17],

B(π−π0) < 200× 10−5 [18].

The theoretical result of the π+π− mode agrees well with
the data. For the π+π0 mode, theory is greater than the
experiment by more than a factor of two. However, the
form factors of the axial-vector current are compatible
with the data [15].

Using the full expressions of the form factors(28-33)
and the expansions (39),(40) the puzzle raised in ref. [3]
can be studied. By using the expansion (39),(40) the de-
cay widths of K− → π+π−eν and KL → π+π0eν are
calculated to be

Γ (K− → π+π−eν) = 1519 s−1,

Γ (KL → π+π0eν) = 2233 s−1.

They are about half the values obtained by eqs. (28, 29,
32, 33). These results show that the expansions (39,40)
may not be good approximations. The possible reason is
that because of the contribution of ρ → ππ the resonance
factor

1
q2
3 −m2

ρ +
√
q2
3Γρ(q

2
3)

appears in the form factors (28-33). The range of q2
3 is

4m2
π < q2

3 < m2
K .

Therefore, use of linear expansion of q2
3 is not a good ap-

proximation for the resonance factor. A different reason of
the puzzle has been presented in ref. [4].

The form factors of the vector current are determined
by anomalous vertices. The numerical calculation shows
that the contribution of the form factor H is only 0.5%
of the total decay rate of K− → π+π−eν. Therefore, the
axial-vector current dominates the Kl4 decays.

As shown in fig. 2(a,b) there are two channels in Kl4

decays. The numerical calculation of K− → π+π−eν
shows that the contribution of ρ → ππ(fig. 2(b)) is twice
of the process, K∗ → Kπ, (fig. 2(a)). Only the process
(fig. 2(a)) contributes to K− → π0π0eν. Because of the
Bose statistics there is an additional factor of 1

2 in the for-
mula of the decay rate of this mode. Therefore, this theory
predicts a smaller decay rate for the π0π0 decay mode. On
the other hand, the numerical calculation shows that the
process(fig. 2(b)) is the major contributor of the decay
K̄0 → π+π0eν. The theory predicts a larger branching
ratio for K̄0 → π+π0eν.

All the form factors contribute to Kµ4 decays. Equa-
tions (26,27) show that in the chiral limit PCAC is satis-
fied and the form factor R is determined by other two form
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factors, F and G. The branching ratio of Kµ4 provides a
test of this prediction. The numerical results are

Γ (K−→π+π−µν)=0.634×10−21 GeV, B=1.19×10−5,

Γ (K−→π0π0µν)=0.673×10−22 GeV, B=0.126×10−5,

Γ (K̄0→π+π0µν)=1.01×10−21 GeV, B=0.793×10−4.

The experimental data [14] is

B(K− → π+π−µν) = (1.4± 0.9)× 10−5.

The theory agrees well with the data.

7 Conclusions

All the four form factors of Kl4 have been derived from
an effective theory of large-NC QCD of mesons in the
chiral limit. It has been found that the contribution of the
vector current is negligible and the axial-vector current
is dominant in Kl4 decays. PCAC is revealed from the
theory. In the chiral limit it has been predicted that the
form factor R is determined by the form factors F and G.
The prediction has been tested by K− → π+π−µν. The
theory agrees with the data. The partial-wave analysis has
been done. The central values of the form factors, F and
G, of the π+π− mode are compatible with the data. The
decay rate of this mode agrees well with the data too.
For the π+π0 mode the form factors of the axial-vector
current are compatible with the data. However, the decay
rate is greater than the data. The theoretical branching
ratio of K− → π0π0eν is less than the data. There are
only 10 events. The values of the anomalous form factors
originated in Wess-Zumino-Witten anomaly are greater
than the data. These anomalous form factors are tested
by the decays K∗ → Kππ. The theory is consistent with
the data.

In this theory ρ → ππ(fig. 2(b)) is the most important
channel. It has been found that the linear expansion may
not be a good approximation. The non-zero phase shift of
p-wave originates in the decay ρ → ππ.

There are three problems that should be investigated
in the future study of Kl4.

1) The s-wave phase-shift cannot be revealed from this
study. The σ-meson has to be introduced in this effec-
tive theory.

2) The form factors are calculated in the chiral limit in
this paper. The effects of the strange-quark in Kl4 de-
cays need to be studied. In previous studies [7,9–11]
the amplitudes of the physical processes are calculated
in the limit, mq = 0. We can use the comparison be-
tween theoretical results and the data to estimate the
contributions of the strange-quark mass to these pro-
cesses. We take the decays, φ → KK̄ and K∗ → Kπ as
examples. Using the vertex LφKK̄ of ref. [7], we obtain

Γ (φ → K+K−) = 2.14MeV ,

Γ (φ → K0K̄0) = 1.4MeV .

The data are

Γ (φ → K+K−) = 2.19(1± 0.02)MeV ,

Γ (φ → K0K̄0) = 1.51(1± 0.02)MeV.

The deviation is less than 10%. Using eq. (12), we ob-
tain

Γ (K∗ → Kπ) = 45.6MeV.

and the data is 50.7(1 ± 0.01)MeV. The deviation is
11%. In these calculations g = 0.39 is used. A theo-
retical study on the effect of the strange-quark mass is
needed. As a matter of fact, in ref. [12] the contribu-
tions of current quark masses to pseudoscalar mesons
are calculated to O(m2

q) and the decay constant of
pion, kaon, and η are calculated to O(mq).

3) The calculations are done at the tree level in this pa-
per. According to ref. [7], the amplitudes of Kl4 at the
tree level are at the order of O(NC). The loop diagrams
of the mesons contribute to Kl4 decays too. The am-
plitudes of the loop diagrams are at O(1) in the NC

expansion [7]. The loop diagrams can be calculated
and the effects of loop diagrams bring modifications to
the parameters determined at the tree level.

All these three problems will be investigated in the near
future.

This research was supported by a DOE Grant.
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